A novel cysteine cross-linking method reveals a direct association between claudin-1 and tetraspanin CD9.
نویسندگان
چکیده
Tetraspanins serve as molecular organizers of multiprotein microdomains in cell membranes. Hence to understand functions of tetraspanin proteins, it is critical to identify laterally interacting partner proteins. Here we used a novel technical approach involving exposure and cross-linking of membrane-proximal cysteines coupled with LC-MS/MS protein identification. In this manner we identified nine potential tetraspanin CD9 partners, including claudin-1. Chemical cross-linking yielded a CD9-claudin-1 heterodimer, thus confirming direct association and adding claudin-1 to the short list of proteins that can directly associate with CD9. Interaction of CD9 (and other tetraspanins) with claudin-1 was supported by subcellular colocalization and was confirmed in multiple cell lines, although other claudins (claudin-2, -3, -4, -5, and -7) associated to a much lesser extent. Moreover claudin-1 was distributed very similarly to CD9 in sucrose gradients and, like CD9, was released from A431 and A549 cells upon cholesterol depletion. These biochemical features of claudin-1 are characteristic of tetraspanin microdomain proteins. Although claudins are major structural components of intercellular tight junctions, CD9-claudin-1 complexes did not reside in tight junctions, and depletion of key tetraspanins (CD9 and CD151) by small interfering RNA had no effect on paracellular permeability. However, tetraspanin depletion did cause a marked decrease in the stability of newly synthesized claudin-1. In conclusion, these results (a) validate a technical approach that appears to be particularly well suited for identifying protein partners directly associated with tetraspanins or with other proteins that contain membrane-proximal cysteines and (b) provide insight into how non-junctional claudins may be regulated in the context of tetraspanin-enriched microdomains.
منابع مشابه
A Novel Cysteine Cross-linking Method Reveals a Direct Association between Claudin-1 and Tetraspanin CD9*□S
Tetraspanins serve as molecular organizers of multiprotein microdomains in cell membranes. Hence to understand functions of tetraspanin proteins, it is critical to identify laterally interacting partner proteins. Here we used a novel technical approach involving exposure and cross-linking of membrane-proximal cysteines coupled with LC-MS/MS protein identification. In this manner we identified n...
متن کاملEvidence for specific tetraspanin homodimers: inhibition of palmitoylation makes cysteine residues available for cross-linking.
It is a well-established fact that tetraspanin proteins, a large family of integral membrane proteins involved in cell motility, fusion and signalling, associate extensively with one another and with other transmembrane and membrane-proximal proteins. In this study, we present results strongly suggesting that tetraspanin homodimers are fundamental units within larger tetraspanin complexes. Evid...
متن کاملDifferent states of integrin LFA-1 aggregation are controlled through its association with tetraspanin CD9.
The tetraspanin CD9 has been shown to interact with different members of the β1 and β3 subfamilies of integrins, regulating through these interactions cell adhesion, migration and signaling. Based on confocal microscopy co-localization and on co-immunoprecipitation results, we report here that CD9 associates with the β2 integrin LFA-1 in different types of leukocytes including T, B and monocyti...
متن کاملPalmitoylation supports assembly and function of integrin–tetraspanin complexes
As observed previously, tetraspanin palmitoylation promotes tetraspanin microdomain assembly. Here, we show that palmitoylated integrins (alpha3, alpha6, and beta4 subunits) and tetraspanins (CD9, CD81, and CD63) coexist in substantially overlapping complexes. Removal of beta4 palmitoylation sites markedly impaired cell spreading and signaling through p130Cas on laminin substrate. Also in palmi...
متن کاملP-54: A Study on The Presence of CD52and CD9 on Sperm in Infertile Couples Who Are Candidate for Intra Utreine Insemination
Background: Fertilization and fecundation obviously are the phenomenon in which several factors are involved. Sperm membranous proteins are a series of these important elements. CD9, an inner acrosomal membrane protein, is one of the tetraspanin members that involved in sperm-egg fusion. CD52, is a GPI anchor protein which is expressed in the epididymal cells and during passage of sperms throug...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular & cellular proteomics : MCP
دوره 6 11 شماره
صفحات -
تاریخ انتشار 2007